干货 | Apache Flink 入门技术 PPT 分享
大家好,我是云祁!
之前在团队里和小伙伴们做了关于 Flink 与阿里云 Realtime Compute 的技术分享,今天有时间就把PPT的内容做了整理分享给大家 (多图预警)🙄
前言
Flink 最早期起源于德国柏林工业大学的一个研究项目Stratosphere,直到 2014年4月 捐献给Apache软件基金会...
要知道,在2015年的时候,Filnk几乎没有人知道,更没有人大规模使用它 😭
而阿里是全球第一批使用Flink做大数据计算引擎研发的公司,2015年就引入内部,但最早Flink只能支持小流量互联网场景的数据处理。阿里觉得Flink很有潜力,决定进行改造,并把这个内部版本取名Blink,是英文眨眼的意思:“一眨眼,所有东西都计算好了!😜
在2017年双11,Blink就已成功支持全集团(阿里巴巴、阿里云、菜鸟)所有交易数据的实时计算任务,也验证了Flink可以通过改造支持企业大规模数据计算的场景 。
目前,国内诸多互联网大厂都已经完全拥抱了Flink。本次的分享就是围绕实时计算Flink和Alibaba Cloud Realtime Compute相关的知识点(能力、限制、典型场景,区别)进行分析。
什么是 Apache Flink?
如果用一句话聊聊什么是 Apache Flink 的命脉?
那我的答案可能是:Apache Flink 是以"批是流的特例"的认知进行系统设计的。
就目前最热的两种流计算引擎 Apache Spark 和 Apache Flink 而言,谁最终会成为No1呢?
单从 “低延时” 的角度看,Spark是Micro Batching(微批式)模式,延迟Spark能达到0.5~2秒左右,Flink是Native Streaming(纯流式)模式,延时能达到微秒。
很显然是相对较晚出道的 Apache Flink 后来者居上。那么为什么Apache Flink能做到如此之 "快"呢?根本原因是 Apache Flink 设计之初就认为 “批是流的特例”,整个系统是 Native Streaming 设计,每来一条数据都能够触发计算。相对于需要靠时间来积攒数据 Micro Batching 模式来说,在架构上就已经占据了绝对优势。
那么为什么关于流计算会有两种计算模式呢?
归其根本是因为对流计算的认知不同,是"流是批的特例" 和 “批是流的特例” 两种不同认知产物。
在 Spark 的世界观中,一切都是由批次组成的,离线数据是一个大批次,而实时数据是由一个一个无限的小批次组成的。
而在 Flink 的世界观中,一切都是由流组成的,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。
流式计算分为无状态和有状态两种情况。无状态的计算观察每个独立事件,并根据最后一个事件输出结果。- 例如,流处理应用程序从传感器接收温度读数,并在温度超过 90 度时发出警告。
有状态的计算则会基于多个事件输出结果。以下是一些例子:
所有类型的窗口。例如,计算过去一小时的平均温度,就是有状态的计算 所有用于复杂事件处理的状态机。例如,若在一分钟内收到两个相差 20 度以上的温度读数,则发出警告,这是有状态的计算 流与流之间的所有关联操作,以及流与静态表或动态表之间的关联操作,都是有状态的计算
EventTime,因为我们要根据日志的生成时间进行统计。
在不同的语义时间有不同的应用场景 我们往往更关心事件时间 EventTime
实际上,大多数应用并不需要上述的底层抽象,而是针对核心 API(Core APIs) 进行编程,比如 DataStream API(有界或无界流数据)以及 DataSet API(有界数据集)。这些 API 为数据处理提供了通用的构建模块,比如由用户定义的多种形式的转换(transformations),连接(joins),聚合(aggregations),窗口操作(windows)等等。DataSet API 为有界数据集提供了额外的支持,例如循环与迭代。这些 API处理的数据类型以类(classes)的形式由各自的编程语言所表示。
第一:Flink 具备统一的框架处理有界和无界两种数据流的能力。 第二:部署灵活,Flink 底层支持多种资源调度器,包括 Yarn、Kubernetes 等。Flink 自身带的 Standalone 的调度器,在部署上也十分灵活。 第三:极高的可伸缩性,可伸缩性对于分布式系统十分重要,阿里巴巴双 11 大屏采用 Flink 处理海量数据,使用过程中测得 Flink 峰值可达 17 亿 / 秒。 第四:极致的流式处理性能。Flink 相对于 Storm 最大的特点是将状态语义完全抽象到框架中,支持本地状态读取,避免了大量网络 IO,可以极大提升状态存取的性能。
实时数仓
当下游要构建实时数仓时,上游则可能需要实时的Stream ETL。这个过程会进行实时清洗或扩展数据,清洗完成后写入到下游的实时数仓的整个链路中,可保证数据查询的时效性,形成实时数据采集、实时数据处理以及下游的实时Query。
搜索引擎推荐
搜索引擎这块以淘宝为例,当卖家上线新商品时,后台会实时产生消息流,该消息流经过Flink 系统时会进行数据的处理、扩展。然后将处理及扩展后的数据生成实时索引,写入到搜索引擎中。这样当淘宝卖家上线新商品时,能在秒级或者分钟级实现搜索引擎的搜索。
移动应用中的用户行为分析 消费者技术中的实时数据即席查询
在触发某些规则后,Data Driven 会进行处理或者是进行预警,这些预警会发到下游产生业务通知,这是Data Driven 的应用场景,Data Driven 在应用上更多应用于复杂事件的处理。
实时推荐(例如在客户浏览商家页面的同时进行商品推荐) 模式识别或复杂事件处理(例如根据信用卡交易记录进行欺诈识别) 异常检测(例如计算机网络入侵检测)
接下来就该讲讲 Apache Flink 的几点优势:
于是,我们可以想一个比较好的办法: 在项链上每隔一段就松松地系上一根有色皮筋,将珠子分隔开; 当珠子被拨动的时候,皮筋也可以被拨动; 然后,你安排一个助手,让他在你和朋友拨到皮筋时记录总数。用这种方法,当有人数错时,就不必从头开始数。相反,你向其他人发出错误警示,然后你们都从上一根皮筋处开始重数,助手则会告诉每个人重数时的起始数值。
第一步就是重新启动
第二步是从 checkpoint 中读取状态,将状态重置 从检查点重新启动应用程序后,其内部状态与检查点完成时的状态完全相同
第三步:开始消费并处理检查点到发生故障之间的所有数据 这种检查点的保存和恢复机制可以为应用程序提供“精确一次”(exactly-once)的一致性,因为所有的算子都会保存检查点并恢复其所有的状态,这样一来所有的输入流就都会被重置到检查点完成时的位置
一种简单的想法暂停应用,保存状态到检查点,再重新恢复应用
Flink 的改进实现基于Chandy-Lamport 算法的分布式快照 将检查点的保存和数据处理分离开,不暂停整个应用
Flink 的检查点算法用到了一种称为分界线(barrier)的特殊形式,用来吧一条流上数据按照不同的检查点分开 分界线之前来的数据导致的状态更改,都会被包含在当前分界线所属的检查点中;而基于分界线之后的数据导致的所有更改,就会被包含在之后的检查点中
下游的Operator 1 会开始运算属于Checkpoint barrier N 的数据,当Checkpoint barrier N 跟着这些数据流动到Operator 1 之后,Operator 1 也将属于Checkpoint barrier N 的所有数据都反映在状态中,当收到Checkpoint barrier N 时也会直接对Checkpoint去做快照。
完整的表格就可以做容错。
Flink 为算子状态提供三种基本数据结构 …. Keyed State 支持四种数据类型 …
MemoryStateBackend / FsStateBackend / RocksDBStateBackend
JVM Heap 状态后端会在每一次运算值需要读取状态时,用Java object read / writes 进行读或写,不会产生较大代价,但当Checkpoint 需要将每一个运算值的本地状态放入Distributed Snapshots 的时候,就需要进行序列化。
在Runtime 的本地状态后端让使用者去读取状态的时候会经过磁盘,相当于将状态维护在磁盘里,与之对应的代价可能就是每次读取状态时,都需要经过序列化和反序列化的过程。当需要进行快照时只将应用序列化即可,序列化后的数据直接传输到中央的共享DFS 中。
Flink实际上是用 Watermarks 来实现Event – Time 的功能。
Watermarks 在Flink 中也属于特殊事件,其精髓在于当某个运算值收到带有时间戳“ T ”的 Watermarks 时就意味着它不会接收到新的数据了。使用Watermarks 的好处在于可以准确预估收到数据的截止时间。
举例,假设预期收到数据时间与输出结果时间的时间差延迟5 分钟,那么Flink 中所有的 Windows Operator 搜索3 点至4 点的数据,但因为存在延迟需要再多等5分钟直至收集完4:05 分的数据,此时方能判定4 点钟的资料收集完成了,然后才会产出3 点至4 点的数据结果。这个时间段的结果对应的就是 Watermarks 的部分。
Watermark 就是触发前一窗口的“关窗时间”,一旦触发关门那么以当前时刻为准在窗口范围内的所有所有数据都会收入窗中。只要没有达到水位那么不管现实中的时间推进了多久都不会触发关窗。
Savepoint产生的原理是在Checkpoint barrier 流动到所有的Pipeline 中手动插入从而产生分布式快照,这些分布式快照点即Savepoint。Savepoint 可以放在任何位置保存,当完成变更时,可以直接从Savepoint 恢复、执行。
Flink vs. Blink
Spark Streaming的本质还是一个基于microbatch计算的引擎。这种引擎一个天生的缺点就是每个microbatch的调度开销比较大,当我们要求的延迟越低,额外的开销就越大。这就导致了Spark Streaming实际上不是特别适合于做秒级甚至亚秒级的计算。
Kafka Streams 是从一个日志系统做起来的,它的设计目标是足够轻量,足够简洁易用。这一点很难满足我们对大体量的复杂计算的需求。
Storm是一个没有批处理能力的数据流处理器,除此之外Storm只提供了非常底层的API,用户需要自己实现很多复杂的逻辑。
2015年以来,阿里巴巴团队主要专注于解决Blink的runtime稳定性和scalability的问题。
在拥有了稳定的runtime之后,开始专注于增强Blink的易用性 。所以在2016年底到现在,阿里巴巴团队大力开发Blink实时计算SQL,通过SQL作为统一API服务于各种复杂业务。
从规范Streaming SQL的语义和标准,到实现UDX、join、aggregation、window等一系列SQL最重要的算子,几乎一手打造了完整的Streaming SQL,并且将这些工作推回了FLink社区,得到Flink社区的认可。
学习建议
End
Real -Time Is The Future . 我是云祁,我们下期见啦 ~
分享 | 双十一 Kafka+Flink+Redis 的电商大屏实时计算案例
简单聊聊 Flink 的容错机制(Checkpoints)
浅谈大数据建模的关键技术:维度建模